

TO FIND THE CAUSE OF YOUR PATIENT'S HYPOTONIA

Could it be AADC deficiency?

Accurate identification of disease manifestation can help improve the care and management of patients with AADC deficiency.^{1,2}

Neurotransmitter disorders are increasingly recognized as an expanding group of inherited neurometabolic syndromes that affect children

Neurotransmitters, like dopamine, support a variety of functions in the body, including cognition, emotion, and movement. Dopamine is specifically involved with decision-making, motivation, and motor control.³⁻⁵ Within a growing group of genetic conditions referred to broadly as neurotransmitter disorders, many are marked by a disruption in monoamine neurotransmitter synthesis, metabolism, and homeostasis.

Neurotransmitter deficiency can lead to a range of neurological manifestations in childhood, including^{3,6}:

- > Developmental delay
- **>** Epilepsy

> Neuropsychiatric features

- Motor disorders
- > Autonomic dysfunction

One neurotransmitter disorder is Aromatic L-amino Acid Decarboxylase (AADC) deficiency, which is a genetic disease associated with defects in neurotransmitter synthesis that can lead to a manifestation of a broad spectrum of symptoms.

The most common symptoms of this autosomal recessive disorder are⁷⁻¹⁰:

- > Hypotonia
- > Developmental delay
- > Movement disorders, especially oculogyric crises

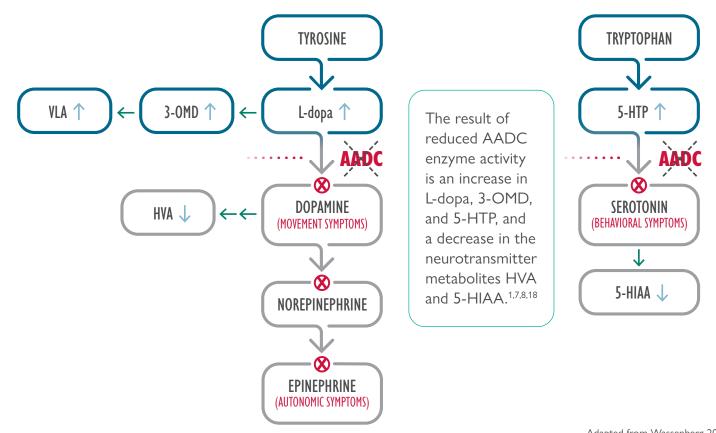
Many of the most common symptoms of AADC deficiency can also be attributed to a number of other conditions, resulting in potential misdiagnosis.^{3,6-8,11-14}

Some of these conditions include:

- > Cerebral palsy
- Epilepsy
- > Juvenile parkinsonism

"If all of these symptoms are observed, the diagnosis can be made. But, if you have no experience or knowledge about it, you may have difficulty making a diagnosis."

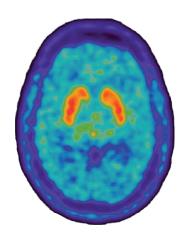
Takanori Yamagata, MD Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan


View videos to hear more about symptoms of AADC deficiency

Unlike juvenile parkinsonism and certain forms of epilepsy, AADC deficiency is not neurodegenerative or multifactorial.^{4,7,11,15-17}

AADC is an enzyme required for biosynthesis of dopamine and serotonin⁷

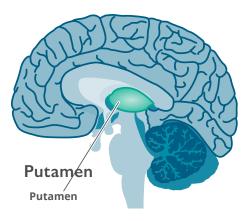
In AADC deficiency, mutations in the dopa decarboxylase (*DDC*) gene result in significant reduction or complete loss of AADC enzyme activity, leading to severe combined deficiency of dopamine, serotonin, norepinephrine, and epinephrine.^{1,7,8,18}


Adapted from Wassenberg 2017.7

Visit **AADCInsights.com** to learn more about AADC deficiency and how to identify patients who may have this neurotransmitter disorder.

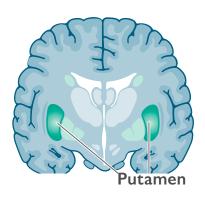
The putamen is a major site of dopamine activity and plays a critical role in motor function 19,20

The putamen is part of the dorsal striatum, which plays a key role in corticostriatal connections that determine motor performance. It is a major site of AADC enzyme activity, and, consequently, dopamine activity.^{4,19,21}



Axial brain image of ¹⁸F-DOPA PET showing striatal uptake in both caudate and putamen nuclei

As an important site of dopamine signaling, a deficiency of dopamine in the putamen can lead to dopamine depletion and motor dysfunction in patients with AADC deficiency.^{4,20}


SAGITTAL SECTION

SAGITTAL SECTION

CORONAL SECTION

CORONAL SECTION

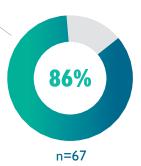
Recognize the signs and symptoms of AADC deficiency

In a clinical study of 78 patients who were diagnosed with AADC deficiency, the following symptoms were documented8:

Hypotonia⁸

Most commonly reported symptom

Developmental delay⁸


In AADC deficiency, developmental delay may include impairments in head control, crawling, or standing, and speech delays^{7,10}

Movement disorders

Oculogyric crisis⁸

- ➤ Episodes of sustained upward or lateral deviation of the eyes, rhythmic orofacial movements, backward and lateral flexions of the neck, tongue protrusion, and jaw spasms¹⁸
- Can last a few seconds or persist for several hours, and occur several times per day or week¹

- ➤ May not be present in all cases⁸
- > Often misdiagnosed as a seizure, epilepsy, or mitochondrial disease^{1,22}

Other movement disorders or symptoms include⁸:

- > Dystonia (53%) n=41
- > Hypertonia (44%) n=35
- > Hypokinesia (32%) n=25

Autonomic symptoms include8:

- > Hyperhidrosis (65%) n=51
- ➤ Hypersalivation (41%) n=32
- > Ptosis (39%) n=30
- ➤ Nasal congestion (31%) n=24

"A lot of these manifestations are non-specific, and one needs to synthesize them and put them together to arrive at the correct diagnosis of AADC deficiency."

Phillip Pearl, MD

Director, Epilepsy and Clinical Neurophysiology at Boston Children's Hospital; William G Lennox Chair and Professor of Neurology at Harvard Medical School, Boston, MA

View this video to hear more from this interview ▶

AADC deficiency may be misdiagnosed or go undiagnosed, delaying treatment and proper management^{2,7,8}

Despite symptom onset during infancy, diagnosis is typically delayed⁷:

Mean age of diagnosis

3.5 years

Symptoms of neurotransmitter disorders can overlap with those of other neurological disorders, which can make diagnosis challenging. Many of the most common symptoms of AADC deficiency can also be attributed to a number of other conditions such as cerebral palsy and epilepsy, resulting in potential misdiagnosis.^{3,6-8,12-14}

The challenge of a correct diagnosis: conditions with symptoms similar to those of AADC deficiency

AADC deficiency symptoms ^{2,7}	May be diagnosed as ^{3,11,12,14,22}
Oculogyric Crises	Epilepsy
Dystonia • Rigidity • Motor Delay	Cerebral Palsy
Dystonia • Developmental Delay • Rigidity	Juvenile Parkinsonism
Hypotonia • Akinesia • Ptosis	Neuromuscular Disorders

Both juvenile parkinsonism and AADC deficiency are associated with a deficiency in dopamine, but they differ in etiology and presentation. Unlike juvenile parkinsonism, **AADC deficiency** is a nonprogressive, neurodevelopmental, single-gene disorder with symptom onset during infancy.^{4,7,11,16}

You may want to consider an alternate diagnosis of a neurotransmitter disorder such as AADC deficiency for your patients with:

- > Cerebral palsy of unknown etiology
- > Epilepsy that is refractory to treatment
- Juvenile parkinsonism whose symptoms don't progress

Look for key differentiating signs and symptoms of AADC deficiency

One or a combination of the following red-flag diagnostic clues should prompt investigation for a neurotransmitter disorder, including AADC deficiency:

Oculogyric crises^{2,8,23}

> Episodes of sustained upward or lateral deviation of the eyes, rhythmic orofacial movements, backward and lateral flexions of the neck, tongue protrusion, and jaw spasms that can sometimes be confused with seizures 13,18

EEG or neuroimaging inconsistent with symptoms

➤ One study showed that only a small proportion of patients with AADC deficiency had an abnormal EEG, MRI, or CT8

Autonomic symptoms²

➤ Multiple signs of autonomic dysfunction¹³

Diurnal variation^{3,7,24}

Symptoms become exacerbated or more prominent late in the day and improve with sleep^{3,24}

"If a physician is thinking AADC and trying to decide whether it might be a primary seizure disorder or cerebral palsy, if they look at the autonomic problems and they're there in that child, that will move them away from the seizure diagnosis or cerebral palsy diagnosis."

Keith Hyland, PhD Strategic Director, Medical Neurogenetics Laboratories – A LabCorp compa

View this video to hear more from this interview >

If you suspect your patient may have one or a combination of these distinguishing signs and symptoms, consider testing for AADC deficiency.

To learn more about distinguishing signs and symptoms of AADC deficiency and how to test for this condition, visit **AADCInsights.com**.

Accurate identification can help improve the care and management of patients with AADC deficiency^{1,2}

Diagnostic pathway for suspected AADC deficiency^{2,7}

HYPOTONIA, HYPERTONIA

AND

DELAYED

MOTOR DEVELOPMENT

AND

STRUCTURALLY NORMAL MRI

MOVEMENT DISORDERS AND/OR AUTONOMIC SYMPTOMS

- Oculogyric crisis (can be mistaken for seizures)
- Dystonia
- Hypokinesia and/or bradykinesia
- **>** Ptosis
- **Excessive sweating**
- Nasal congestion
- → Temperature instability

Patients with AADC deficiency may present with one or a combination of symptoms.²

TEST FOR AADC DEFICIENCY

Core diagnostic tests	Results
Single gene or genetic panel	Mutation(s) in the DDC gene
Plasma enzyme activity assay AND/OR	LOW plasma AADC enzyme activity
CSF neurotransmitter metabolite panel	REDUCED HVA, 5-HIAA, and MHPG ELEVATED 3-OMD, L-dopa, and 5-HTP NORMAL pterins

Adapted from Himmelreich 2019.²

Other tests that may be helpful include²⁵⁻²⁸:

- > Blood level measurement of 3-OMD
- > Urinary organic acid analysis

Current consensus guidelines recommend performing a CSF neurotransmitter metabolite panel and/or plasma AADC enzyme activity assay in combination with genetic testing to confirm a diagnosis of AADC deficiency.⁷

Visit **AADCInsights.com** to learn more about diagnosing neurotransmitter disorders like AADC deficiency.

Identify neurotransmitter disorders like AADC deficiency earlier by looking for distinguishing signs and symptoms

Symptoms of neurotransmitter disorders can overlap with those of other neurological disorders

Accurate identification can help improve the care and management of patients with AADC deficiency^{1,2}

One or a combination of red-flag diagnostic clues should prompt testing for a neurotransmitter disorder, like AADC deficiency:

Genetic testing options are available to confirm a diagnosis of AADC deficiency

- > Oculogyric crises^{2,8,23}
- > Normal EEG and neuroimaging^{2,7,12,13}
- ➤ Autonomic symptoms²
- ▶ Diurnal variation^{3,7,24}

Visit **AADCInsights.com** to learn more about AADC deficiency and how to diagnose this neurotransmitter disorder.

References: 1. Pons R, Ford B, Chiriboga CA, et al. Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis. Neurology. 2004;62(7):1058-1065. 2. Himmelreich N, Montioli R, Bertoldi M, et al. Aromatic amino acid decarboxylase deficiency: molecular and metabolic basis and therapeutic outlook. Mol Genet Metab. 2019;127(1):12-22 doi:10.1016/j.ymgme.2019.03.009. 3. Ng J, Papandreou A, Heales SJ, et al. Monoamine neurotransmitter disorders—clinical advances and future perspectives. Nat Rev Neurol. 2015;11(10):567-584. 4. Hwu PW, Kiening K, Anselm I, et al. Gene therapy in the putamen for curing AADC deficiency and Parkinson's disease. EMBO Mol Med. 2021;13(9):e14712. doi:10.15252/emmm.202114712. 5. Neurotransmitters: What they are, functions & types. Cleveland Clinic. https://my.clevelandclinic.org/health/articles/22513-neurotransmitters#:~:text=Neurotransmitters%20are%20chemical%20 messengers%20that,muscle%20cell%20or%20a%20gland. Published March 14, 2022. Accessed June 23, 2022. 6. Ng J, Heales SJR, Kurian MA. Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders. Paediatr Drugs. 2014;16(4):275-291. doi:10.1007/s40272-014-0079-z. 7. Wassenberg T, Molero-Luis M, Jeltsch K, et al. Consensus guideline for the diagnosis and treatment of aromatic L-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis. 2017;12(1):12. doi:10.1186/s13023-016-0522-z. 8. Brun L, Ngu LH, Keng WT, et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010;75(1):64-71. 9. Manegold C, Hoffmann GF, Degen I, et al. Aromatic L-amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up. J Inherit Metab Dis. 2009;32(3):371-380. 10. Hwu WL, Chien YH, Lee NC, et al. Natural history of aromatic L-amino acid decarboxylase deficiency in Taiwan. JIMD Rep. 2018;40:1-6. doi:10.1007/8904_2017_54. 11. Niemann N, Jankovic J. Juvenile parkinsonism: Differential diagnosis, genetics, and treatment. Parkinsonism: Relat Disord. 2019;67:74-89. doi:10.1016/j.parkreldis.2019.06.025. 12. Kurian MA, Dale RC. Movement disorders presenting in childhood. Continuum (Minneap Minn). 2016;22(4):1159-1185. 13. Zouvelou V, Yubero D, Apostolakopoulou L, et al. The genetic etiology in cerebral palsy mimics: the results from a Greek tertiary care center. Eur J Paediatr Neurol. 2019;23(3):427-437. doi:10.1016/ j.ejpn.2019.02.001. 14. Krigger KW. Cerebral palsy: an overview. Am Fam Physician. 2006;73(1):91-100. 15. Tasch E, Cendes F, Li LM, Dubeau F, Andermann F, Arnold DL. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann Neurol. 1999;45(5):568-576. doi:10.1002/1531-8249(199905)45:5<568:aidana4>3.0.co;2-p. 16. Shrimanker I, Tadi P, Sánchez-Manso JC. Parkinsonism. In: StatPearls. Treasure Island (FL): StatPearls Publishing, May 8, 2022. 17. Sirven JI. Epilepsy: A Spectrum Disorder. Cold Spring Harb Perspect Med. 2015 Sep 1,5(9):a022848. doi:10.1101/cshperspect.a022848. PMID: 26328931; PMCID: PMC4561391. 18. Hwu WL, Lee NC, Chien YH, et al. AADC deficiency: occurring in humans, modeled in rodents. Adv Pharmacol. 2013;68:273-284. 19. Hwu W-L, Muramatsu S-i, Tseng S-H, et al. Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med. 2012;4(134):134ra61. doi:10.1126/ scitranslmed.3003640. 20. Luo X, Mao Q, Shi J, Wang X, Li CR. Putamen gray matter volumes in neuropsychiatric and neurodegenerative disorders. World J Psychiatry Ment Health Res. 2019;3(1):1020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6641567/pdf/nihms-1039924.pdf. Published May 2019. Accessed April 2022. 21. Ghandili M, Munakomi S. Neuroanatomy, Putamen StatPearls [Internet]. StatPearls Publishing; 2022. https://www.ncbi.nlm.nih.gov/books/NBK542170. Updated February 2022. Accessed July 2022. 22. Lee W-T. Disorders of monoamine metabolism: inherited disorders frequently misdiagnosed as epilepsy. Epilepsy Seizure. 2010;3(1):147-153. doi:10.3805/eands.3.147. 23. Pearson TS, Gilbert L, Opladen T, et al. AADC deficiency from infancy to adulthood: symptoms and developmental outcome in an international cohort of 63 patients. J Inherit Metab Dis. 2020;43(5):1121-1130. doi:10.1002/jimd.12247. 24. Pearson TS, Pons R, Ghaoui R, Sue CM. Genetic mimics of cerebral palsy. Mov Disord. 2019;34(5):625-636. doi:10.1002/mds.27655. 25. Monteleone B, Hyland K. Case report: discovery of 2 gene variants for aromatic L-amino acid decarboxylase deficiency in 2 African American siblings. BMC Neurol. 2020;20(1):12. doi:10.1186/s12883-019-1596-8. 26. Chen P-W, Lee N-C, Chien Y-H, et al. Diagnosis of aromatic L-amino acid decarboxylase deficiency by measuring 3-O-methyldopa concentrations in dried blood spots. Clin Chim Acta. 2014;431:19-22. 27. Chien Y-H, Chen P-W, Lee N-C, et al. 3-O-methyldopa levels in newborns: result of newborn screening for aromatic L-amino-acid decarboxylase deficiency. Mol Genet Metab. 2016;118(4):259-263. doi:10.1016/j.ymgme.2016.05.011. 28. Brennenstuhl H, Kohlmüller D, Gramer G, et al. High throughput newborn screening for aromatic L-amino-acid decarboxylase deficiency by analysis of concentrations of 3-O-methyldopa from dried blood spots. | Inherit Metab Dis. 2020;43(3):602-610. doi:10.1002/jimd.12208.

