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Clinical Variant Modeling
Invitae Clinical Variant Modeling harnesses genotype and phenotype data 
from over 4 million patients to predict the pathogenicity of genetic variants 
with high accuracy

Background
The goal of clinical genetic testing is to assess risk for or to confirm diagnosis of some hereditary diseases. In the course 
of genetic testing, distinguishing pathogenic DNA variants from benign ones is a significant challenge. Clinical genetic 
testing labs continue to encounter many novel rare variants as more individuals undergo genetic testing (Invitae, Data 
on file), further exacerbating the challenge. The majority of these variants have limited public data associated with 
them and end up classified as variants of uncertain significance (VUS).

Clinical data are among the most powerful forms of evidence for distinguishing pathogenic from benign variants1–3. 
For example, these data may include observation of a variant in patients with a clearly defined disease, variant 
segregation in affected individuals, or observation of de novo occurrence of a variant. However, there are often 
challenges with incorporating clinical data into variant classification. For instance, a complete relevant medical history 
is not always provided at the time of genetic testing, which makes it challenging to differentiate between affected 
individuals with missing data and those who are unaffected. Second, many hereditary diseases include symptoms 
that can be associated with common sporadic diseases, such as cancer and cardiovascular diseases, limiting our 
ability to identify a molecular cause and establish a genetic etiology. Finally, not all genetic diseases exhibit complete 
penetrance, which makes it difficult to determine when a variant is not associated with hereditary disease, and 
therefore benign. These challenges are particularly acute when reviewing clinical data on a case-by-case basis for 
variant classification, but with increasing access to large sets of clinical health information and genetic testing results 
we believe they can be overcome. 

Our laboratory is well-positioned to leverage clinical data efficiently at scale to improve clinical variant classification. 
By the end of 2023, we had accumulated genotype data and clinical data for over 4 million individuals who were of 
diverse racial and ethnic backgrounds and referred to Invitae® for a wide range of clinical genetic testing. This dataset 
is massive and clinically diverse: it includes over 100 million words of clinical descriptions (e.g., personal and family 
history, indications for testing) submitted for the tested patients, as well as over 2 million unique variants observed 
across more than 3,900 genes.

What are clinical variant models?
To maximize the utility of large clinical datasets for improving variant classification and reducing VUS, Invitae has 
developed an approach called Clinical Variant Modeling. It is essentially a method for learning patterns from 
clinical data available for millions of patients and precisely applying this as evidence for variant classification using a 
Bayesian approach. Importantly, this approach takes into account the penetrance of disease, age at testing, potential 
phenocopies and missing data on the test requisition forms (eFigure 1).
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Clinical Variant Modeling is composed of two distinct, but connected, sequential machine learning (ML) steps. The 
first step involves estimating the probability that a patient tested at Invitae is affected with a specific genetic condition. 
This probability is termed a Patient Score, which incorporates clinical and demographic information from ordering 
providers, including reported signs and symptoms, ICD-10 codes, age at testing and family history. This score is 
estimated by comparing and distinguishing the clinical profile of patients with a positive molecular diagnosis from those 
with a negative molecular diagnosis. In the second step of clinical variant modeling, a Bayesian inference model learns 
the distribution of Patient Scores that could be associated with benign or pathogenic variants. The inferred probability 
that a variant is pathogenic is termed the Variant Score.

To ensure that only the best performing clinical variant models are used for variant classification, we calculated the 
area under the receiver operating characteristics curve (AUROC) for each model to measure the model’s performance 
at distinguishing between benign and pathogenic variants. Only models with an AUROC≥0.8 were selected for further 
evaluation. Continued refinement of the set is accomplished by a combination of further validation metrics and expert 
review. Additional steps were done to establish the weighting of the Variant Scores for incorporation as evidence 
into Sherloc4, Invitae’s variant classification framework. Ultimately, the weight (points) used for variant classification 
was proportional to the predictive value of the Variant Score. Importantly, clinical variant models (CVMs) learn from 
clinical data obtained during the course of genetic testing and can be applied to new patients and variants observed 
by our lab. CVMs are better at making predictions for individuals in our cohort since they understand data patterns and 
potential biases in the sampling and allow for generalizability of the predictions to our specific patient population. For 
more detailed methodology, see the online appendix. 

Impact of Clinical Variant Modeling on patients
As of March 2024, CVMs have been developed and validated for 11 genetic conditions associated with 17 genes 
in which they demonstrate high performance in distinguishing known benign from known pathogenic variants (≥0.8 
AUROC curve; Table 1, details in the online appendix). Predictions from these CVMs have been used as evidence 
to resolve over 1,000 unique VUS, impacting nearly 45,000 individuals. While >99% of these reclassifications 
corresponded to downgrades of VUS to benign or likely benign, the <1% upgrades to pathogenic or likely pathogenic 
impacted 160  individuals. Of note, 91% (10/11) of variant upgrades were in genes associated with conditions that 
have established guidelines for screening and treatment5,6, highlighting the potential to change an individual’s medical 
management and identify at-risk relatives. 
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CVM 
condition 
model

Gene(s) 
included

AUROC Estimated number 
of unique VUS>LB/B 
downgrades due 
to clinical variant 
models (number of 
patients impacted)

Estimated number 
of unique VUS>LP/P 
upgrades due to 
clinical variant 
models (number of 
patients impacted)

Estimated 
number of 
patient reports 
with VUS 
reclassific 
actions

Estimated  
VUS reduction 
in patients 
due to clinical 
variant models

Lynch  
syndrome

MLH1

MSH2

MSH6

PMS2

EPCAM

0.88 266 (17,260) 3 (54) 17,945 24%

CASR-related 
conditions CASR 0.92 45 (2,957) 7 (106) 3,063 45%

DMD-related 
conditions DMD 0.97 24 (471) 0 486 9%

Hereditary 
multiple 
osteochondro-
matosis

EXT1 

EXT2
0.98 24 (446) 0 446 37%

MEN1-related 
conditions MEN1 0.96 31 (1,502) 0 1,502 32%

NF1-related 
conditions NF1 0.96 331 (12,094) 0 12,133 49%

NF2-related 
conditions NF2 0.99 30 (1,441) 0 1,441 41%

RB1-related 
conditions RB1 0.98 31 (589) 0 589 19%

SMAD4-
related 
conditions

SMAD4 0.94 20 (1,271) 0 1,271 36%

STK11-related 
conditions STK11 0.97 41 (3,707) 0 3,707 47%

Tuberous 
sclerosis 
complex

TSC1

TSC2
0.97 153 (3,070) 0 3,070 16%

Estimated total number 996 (44,808) 10 (160) 44,968

Table 1: List of genes with clinical variant models and the estimated impact of these models at initial 
launch in March 2024. The estimated patient impact analysis was performed in December 2023 and 
the actual impact may be higher.



 4 Clinical Variant ModelingClinical Variant Modeling

Clinical variant model case examples
Example 1:  
How CVM resolved an MLH1 VUS to benign   

Example 2: 
How CVM resolved a CASR VUS to pathogenic

Initial evidence
• Rare in gnomAD
• Reported in colorectal, breast, or ovarian cancer patients
• In silico predictors: inconclusive
• RNA analysis: no significant impact on splicing

Invitae initial classification: VUS
ClinVar: VUS (14 submitters)

MLH1 c.1633A>G 
CVM Variant Score: <0.0002

Predicted benign (NPV>0.95)

Clinical variant model evidence
Patient Scores of individuals with MLH1 c.1633A>G

Patient count: 127 | Mean Patient Score: 0.31

Contextualizing variant Patient Score distribution

Invitae final classification: Likely benign

962 benign MLH1 variants

Patient count: 1,350,215
[Genotype-negative patients]

Mean Patient Score: 0.32 Mean Patient Score: 0.77

Patient count: 3,170
[Patients with a molecular diagnosis]

693 pathogenic MLH1 variants

MLH1
c.1633A>G (p.Thr545Ala)

Initial evidence
• Five individuals across two families with suspected 
   hypercalcemia and/or hyperparathyroidism; serum calcium 
   measurement data available for one individual only
• Multiple in silico predictors: deleterious

Invitae initial classification: VUS
ClinVar: VUS (3 submitters)

CASR c.494T>G
CVM Variant Score: >0.990
Predicted pathogenic (PPV>0.99)

Clinical variant model evidence
Patient Scores of individuals with CASR c.494T>G

Patient count: 5 | Mean Patient Score: 0.99

Contextualizing variant Patient Score distribution

Invitae final classification: Pathogenic

706 benign CASR variants

Patient count: 605,966
[Genotype-negative patients]

Mean Patient Score: 0.22 Mean Patient Score: 0.82

Patient count: 546
[Patients with a molecular diagnosis]

144 pathogenic CASR variants

CASR
c.494T>G (p.Val165Gly)

Both the Patient Score and the Variant Score are on a scale from 0 to 1. The higher the Patient Score (represented 
as darker-shaded boxes), the higher the probability that a patient is affected with the condition based on clinical 
information alone. The higher the Variant Score, the higher the probability that a variant is pathogenic.
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Summary
A major goal at Invitae is to develop and deploy new expert-informed and scalable methods to improve variant 
classification and reduce uncertainty in genetic testing. As genetic testing is increasingly adopted into healthcare for 
disease diagnosis and management, the clinical genomics field is increasingly encountering novel rare variants. At 
the same time, the expansion of genetic testing leads to an ever-growing wealth of data. Leveraging diverse genotype 
and clinical data from over 4 million patients tested at our laboratory to reduce variants of uncertain significance, 
we developed Clinical Variant Modeling, a highly accurate Bayesian approach for incorporating clinical evidence 
at scale. The models described here are only the beginning. We will use this novel approach to improve variant 
classification for many more genes and diseases tested at Invitae in the future, harnessing information at scale as our 
real-world datasets continue to grow. 

For more information, refer to Clinical Variant Modeling Appendix on page 6
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APPENDIX
Clinical Variant Modeling

Methods overview: 

The development and application of clinical variant models for each gene follow several general steps: (1) First, a 
Patient Score is generated to represent the probability that a patient is affected with the molecular condition of interest. 
This Patient Score is used for the next step. (2) Second, a Variant Score is calculated to represent the probability that 
a variant is pathogenic based on the distribution of Patient Scores for that variant. (3) Next, the performance of CVM 
is determined by using a holdout set of known phenotype-genotype relationship data points. (4) Models that perform 
well are then calibrated by measuring positive and negative predictive values (PPV and NPV) from the previous step 
and then integrated with appropriate weight into Sherloc’s variant classification framework. (5) A subset of the variant 
classifications is reviewed by a panel of clinical genomic experts to ensure CVMs are performing as expected. Each 
one of these general steps is explained in further detail below.

Input data Learned

Phenotype 1

Phenotype N

. .
 .

Patient scoring

Patient Score: 0.76

Variant Score: 0.88

Input data Learned Variant Scoring

x
Patient Score:

0.76

Patient Score:
0.04

c.
12

3A
>T

+

Step 1: Patient model and scoring [Probability of patient being affected]

Step 2: Variant model and scoring [Probability of variant being pathogenic]

Population data

Variant type

Clinical observations

Experimental studies

Indirect and computational

Step 4: Sherloc weighting Step 5: Expert reviewStep 3: Performance evaluation

Indication, Family history, 
ICD10, Age

Patient observations (with patient 
scores) across known pathogenic and 

known benign variants

Patients with a
molecular diagnosis

(for gene of interest)

Genotype-negative
cohort

(for gene of interest)

Score patients based on learned 
importance of clinical features

Clinical features that distinguish patients 
with a molecular diagnosis from 

genotype-negative patients

Differences in the distribution of 
Patient Scores for pathogenic 

variants and benign variants

Score variants based on patient 
score distributions
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variants

Pathogenic 
variants
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Benign 
variants
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ROC curves, e.g.
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<0.80

AUROC
≥0.80

eFigure 1. Methods overview of CVMs. See details in the text below.
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Step 1: Patient Score generation
CVMs leverage clinical data to predict the pathogenicity of variants for a given genetic condition in a stepwise 
manner. By leveraging details found in the clinician-reported data from the test requisition form (e.g., personal health 
history; family health history; age; sex; patient’s race, ethnicity, and ancestry; ICD-10 codes; and clinical area of the 
test ordered), we first train a model to learn the clinical picture that distinguishes patients with a positive molecular 
diagnosis for the condition of interest from genotype-negative controls (i.e., patients without VUS, LP, or P variants in 
the condition of interest and who do not have a molecular diagnosis in another condition; eFigure 1, Step 1 and eTable 
1). For each patient, a Patient Score is generated (scale from 0 to 1), which is the probability that a given patient is 
affected with the genetic condition of interest based on the clinical information alone (eFigure 1, Step 1). Based on 
what is learned, we apply this information to other patients who have VUS in the condition of interest, provided they do 
not have a current molecular diagnosis in another gene. We do this by scoring the other patients’ clinical profiles on 
how similar they look to positive or negative cases.

CVM condition 
model

Gene(s) 
included

Genotype- 
negative 
patients (n)

Patients with 
a molecular 
diagnosis (n)

Known benign 
variants (labels, n)

Known pathogenic 
variants (labels, n)

Lynch Syndrome

MLH1

MSH2

MSH6

PMS2

EPCAM

1,350,215 20,521

962
1571
2126
1002
51

693
726
898
408
7

CASR-related conditions CASR 605,966 546 706 144

DMD-related conditions DMD 486,110 3,732 1871 766

Hereditary multiple 
osteochondro-matosis

EXT1 

EXT2
49,129 993

171
225

321
136

MEN1-related conditions MEN1 1,155,756 1,046 669 358

NF1-related conditions NF1 1,476,630 10,537 3070 3281

NF2-related conditions NF2 10,330 294 538 129

RB1-related conditions RB1 337,230 830 925 342

SMAD4-related 
conditions SMAD4 28,191 396 569 157

STK11-related conditions STK11 559,563 448 779 169

Tuberous sclerosis 
complex

TSC1

TSC2
1,022,619 2,510

1535
4301

394
725

eTable 1.  The number of genotype positive and genotype negative patients, as well as the number of 
known benign and pathogenic variants used for training and testing each clinical variant model.
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Patients with a molecular diagnosis
(1 pathogenic or likely pathogenic variant in 

MLH1, MSH2, MSH6, PMS2 or EPCAM)

Genotype-negative cohort
(No pathogenic, likely pathogenic or VUS in 

MLH1, MSH2, MSH6, PMS2 or EPCAM)

Age
Sex
Indication

Family history

ICD10

64 yo
Female

Amsterdam II 

[Blank]

C54.1 Malignant neoplasm 
                of endometrium

Age
Sex
Indication

Family history

ICD10

55 yo
Female

Colon

Brother with colon @ 33

C18.9
Z80.4 

Age
Sex
Indication

Family history

ICD10

59 yo
Female

MSI-H

Father

[Blank]

Age
Sex
Indication

Family history

ICD-10

42 yo
Female

Endometrial cancer

Cousin with BRCA1

C54.1 Malignant neoplasm 
            of endometrium

Age
Sex
Indication

Family history

ICD10

38 yo
Female

Amsterdam II 

[Blank]

C54.1 Malignant neoplasm 
                of endometrium

Age
Sex
Indication

Family history

ICD10

77 yo
Female

Colon

Brother with colon @ 33

C18.9
Z80.4 

Age
Sex
Indication

Family history

ICD10

80 yo
Female

[Blank]

[Blank]

[Blank]

Age
Sex
Indication

Family history

ICD-10

56 yo
Male

Colorectal cancer

Col.Ca (mother, 66y)
Col.Ca (mat. aunt, 44y)

C18.9 Malignant neoplasm 
            of colon

Age
Sex
Indication

Family history

ICD10

31yo
Female

Amsterdam II 

[Blank]

C54.1 Malignant neoplasm 
                of endometrium

Age
Sex
Indication

Family history

ICD10

29yo
Female

Colon

Brother with colon @ 33

C18.9
Z80.4 

Age
Sex
Indication

Family history

ICD10

39 yo
Female

Skin

Sister

[Blank]

Age
Sex
Indication

Family history

ICD-10

59 yo
Female

>100 colon polyps

2 sisters and father with
APC mutation

D13.91 Familial adenomatous
              polyposis

Age
Sex
Indication

Family history

ICD10

58 yo
Female

[Blank]

[Blank]

[Blank]

Age
Sex
Indication

Family history

ICD10

41yo
Female

Endometrial

Daughter

C54.1

Age
Sex
Indication

Family history

ICD10

80 yo
Female

Breast

Mother

[Blank]

Age
Sex
Indication

Family history

ICD-10

76 yo
Female

Colorectal cancer

[Blank]

[Blank]

Learned clinical feature weights
(Lynch syndrome CVM)

“C13.91” [ICD-10]
Familial adenomatous polyposis

“Amsterdam” [Indication]

Age
Sex
Indication

Family history

ICD-10

64 yo
Female

Endometrial cancer,  MSI-H

Mother: BrCa (62),
OvCa (47)

C54.1   Malignant neoplasm of 
              Endometrium
Z80.3   Family history of breast 
              malignancy
Z80.41 Family history of malignant
              neoplasm of ovary

Age
Sex
Indication

Family history

ICD-10

64 yo
Female

Endometrial cancer,  MSI-H

Mother: BrCa (62),
OvCa (47)

C54.1   Malignant neoplasm of 
              Endometrium
Z80.3   Family history of breast 
              malignancy
Z80.41 Family history of malignant
              neoplasm of ovary

Patient Score: 0.76. .
 .

. .
 .

“Endometrial” [Indication]

“Colorectal” [Family history]

“Breast cancer” [Family history]

“C18.9” [ICD-10]
Malignant neoplasm of colon

Step 2: Variant Score generation
Next, using a set of known pathogenic and benign variants for the condition, called labels (eTable 1), a second model 
learns the distribution of Patient Scores that are typical for pathogenic and benign variants (eFigure 3A, B). Based on 
what is learned, we can score VUS based on how similarly their distribution of Patient Scores look to pathogenic and 
benign variants. A Variant Score is generated for each variant (scale from 0 to 1), which is the probability that a given 
variant is pathogenic. The higher the Variant Score, the higher the probability that the variant is pathogenic (eFigure 3C).

eFigure 2. Generation of the Patient Score. (A) First, for a given molecular disease, which may be defined by a single gene (e.g., 
Neurofibromatosis type I) or multiple genes (e.g., Lynch syndrome), clinical-related patient information is gathered for all patients with a molecular 
diagnosis for the condition as well as for all patients who have only benign variation in the genes of interest and no other molecular diagnosis (i.e., 
genotype-negative cohort). An ML model learns the appropriate evidence weights for pieces of clinical information that distinguish individuals with 
molecular diagnosis from genotype-negative individuals. (B) Next, the learned evidence strengths for the clinical symptoms seen in the cohorts are 
then applied to each individual in the entire cohort to generate a Patient Score for each individual.
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eFigure 3A.

Patient score: 0.76

0.76

0.01

M
SH

2 
c.

##
#A

>G

Patient score: 0.76

Age
Sex
Indication

Family history

ICD-10

64 yo
Female

Endometrial cancer,  MSI-H

Mother: BrCa (62),
OvCa (47)

C54.1   Malignant neoplasm of 
              Endometrium
Z80.3   Family history of breast 
              malignancy
Z80.41 Family history of malignant
              neoplasm of ovary

Patient score: 0.01

Age
Sex
Indication

Family history

ICD-10

75 yo
Male

Prostate cancer

[Blank]

C61     Malignant neoplasm 
             of prostate
Z13.79 Encounter of other screening
              for genetic and chromosomal 
              abnormalities

eFigure 3C.

Current classification: B B B B B B B P PP P PP PVUSVUS

CVM variant score: 0.990.910.020.020.020.010.01

VUS

0.36

VUS

0.12

VUS

Invitae final classification: B B B B B B B P PP P PP PLPLB VUSVUS VUS

0.580.060.040.03 0.990.990.990.990.960.940.91

eFigure 3B.

0.060.040.030.020.020.020.01

B B B B B B B P PP P PP P

Phenocopy

Penetrance, 
age-of-onset,

incomplete clinical 
information, etc.

Current classification:

CVM variant score: 0.91 0.990.990.990.990.960.940.91 0.060.040.030.020.020.020.01

B B B B B B B P PP P PP P

Phenocopy

Penetrance, 
age-of-onset,

incomplete clinical 
information, etc.

Current classification:

CVM variant score: 0.91 0.990.990.990.990.960.940.91
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Step 3: Evaluation of CVM’s performance 
All CVMs are carefully screened to ensure high performance in distinguishing pathogenic and benign variants (e.g., 
AUROC≥0.8) by testing each model against a set of known pathogenic and benign variants that the model has 
not seen before (i.e., 20% holdout set; see Table 1, AUROC values for model performance). Models passing our 
high-performance threshold are then calibrated, followed by evaluation by our clinical genomics experts before 
implementation. To date, Clinical Variant Modeling has demonstrated high accuracy for over 600 genes and 
conditions, and the 11 most promising and impactful of these models are initially being rolled out through a careful 
process with our clinical genomics experts (Table 1). 

Step 4: Calibration of CVMs and integration into the Sherloc framework
To integrate the predictions from the CVMs into the Sherloc variant classification framework1, two tiers of predictions 
were established based on predictive performance thresholds, as measured in negative and positive predictive values 
(NPV and PPV; eFigure 5). The benign tier was defined as strong benign evidence, which is enough evidence to classify 
the variant as likely benign without evidence to the contrary. The pathogenic tier was insufficient to reach a likely 
pathogenic classification on its own but could reach the definitive classification with the addition of the variant being 

eFigure 4. Example of CVM results for NF1. Example of CVM results for NF1. In this cell plot, each stack of boxes represents a single genetic 
variant, and each box represents a single patient. Each box is shaded according to the individual’s Patient Score, the inferred probability that 
the patient is affected with the condition. White represents a low Patient Score; teal a high Patient Score. In the strip below, each box is shaded 
according to the Variant Score resulting from the stack of observations from that variant. Blue indicates a low Variant Score; purple, a high 
Variant Score. Note that the y-axis is zoomed in to enable visualization of the patient boxes on the right side. The actual stacks of patient boxes on 
the left extend much higher than what is shown, as these are higher frequency variants. 

eFigure 3. Generation of the Variant Score. (A) Example distribution of Patient Scores for 12 patients with MSH2 c.2210+1G>A. Each box 
represents a patient. Patients with low Patient Scores are shown in white and patients with high Patient Scores are shown in teal. An example 
patient with a high Patient Score, based on the clinical evidence, is shown on the left and an example patient with a low Patient Score, based 
on clinical evidence, on the right. (B) Example distribution of Patient Scores for known benign and pathogenic variants in MSH2. A second ML 
model calculates a Variant Score for each variant based on the distribution of Patient Scores. In the example, the known benign variants, which 
predominantly have individuals with low Patient Scores, all have low Variant Scores, while the known pathogenic variants on the right, which have 
more enrichment for patients with high Patient Scores, all have high Variant Scores. (C) Variant Scores are generated for VUS in MSH2 and can be 
compared to the Variant Scores of known benign and known pathogenic variants.

N
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ie
nt

s

Variant Score (low to high)
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absent or within the expected pathogenic range in gnomAD or another piece of pathogenic evidence. The predictive 
performance thresholds for those tiers were respectively defined as (1) strong benign ≥95% NPV, (2) strong pathogenic 
≥99% PPV. The third and final tier corresponded to predictions that fell between a 99% PPV and below 95% NPV, 
which were deemed insufficiently certain to be assigned a weight within the Sherloc scoring system1 for the first release 
of CVMs.

Clinical Variant Modeling

Sherloc

5B 4B3B 5B

eFigure 5. Clinical variant modeling is incorporated into the variant classification framework, Sherloc. For the initial March 2024 release, 
2 tiers of predictive bins were used to integrate CVM predictions into Sherloc. Variants with CVM predictions with ≥95% NPV were awarded 3 
benign points and variants with CVM predictions ≥99% PPV were awarded 3 pathogenic points. This clinical evidence is taken into account in the 
context of all variant classification evidence in Sherloc. Typical cutoffs for variant classifications are shown at the bottom right: 5 benign points 
for benign, 3 benign points for likely benign, 4 pathogenic points for likely pathogenic, and 5 pathogenic points for a pathogenic classification. 
Clinical genomics expert scientists can override these classification thresholds when necessary due to conflicting evidence and other factors.

Clinical variant modeling score Sherloc 
points Accuracy

Highly predictive benign score 3 B ≥95% NPV

Highly predictive pathogenic score 3 P ≥99% PPV

Step 5: Clinical genomics expert review
To gain further confidence in the prediction outputs of the CVMs, a subset of the variants was selected for thorough 
review by our expert clinical genomic scientists. All 14 variants with strong pathogenic (≥99% PPV) and a sampling of 
163 /1,052 variants with strong benign (≥95% NPV) CVM predictions were included. For each variant, all currently 
available non-CVM evidence was reviewed to evaluate for any concerning contradictory data. In this review, 93% 
(13/14) of variants predicted to be pathogenic and 95% (155/163) predicted to be benign by CVM were confirmed 
by the experts, while the remainder were kept as VUS. Based on this expert review, only one CVM condition model 
was not launched, leaving a total of 11 CVM models. Of note, our experts chose the most challenging variants with 
CVM benign predictions to review (e.g., CVM benign predictions for variants with some level of pathogenic evidence 
or variants in the PMS2 pseudogene region). In addition, four of the predicted pathogenic variants had at least one 
ClinVar entry of likely pathogenic or pathogenic, while a fifth variant predicted to be pathogenic by CVM was recently 
reclassified from a VUS to likely pathogenic at Invitae based on new family segregation data that was obtained after 
the CVM prediction was generated, but prior to the results being reviewed. Similarly, 15 of the reviewed predicted 
benign variants had at least one ClinVar entry of likely benign or benign by another submitter.

Orthogonal validations 
To gain further confidence in the prediction outputs of the CVM, a concordance analysis was performed comparing 
CVMs to the evolutionary model of variant effect (EVE), a deep learning model that uses orthogonal data, namely 
sequence conservation, to predict the pathogenicity of variants in humans2. CVM predictions were highly concordant 
with EVE predictions (90.5%; eTable 2).
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For additional confidence in the prediction outputs of the CVM for the Lynch syndrome genes (MLH1, MSH2, MSH6, 
PMS2, EPCAM), we compared the CVM model predictions to functional datasets (e.g., multiplex assays of variant 
effects or MAVEs) for MLH1, MSH2, and PMS2. The variants that had both CVM model predictions and MAVE 
predictions showed high concordance (>98%; eTable 3). 
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MLH1 MAVE based predictions*

Benign Pathogenic

Benign 61 0

Pathogenic 1 8

*MLH1 concordance is 98.6%.

MSH2 MAVE based predictions*

Benign Pathogenic

Benign 140 1

Pathogenic 1 12

*MSH2 concordance is 98.7%.

PMS2 MAVE based predictions*

Benign Pathogenic

Benign 32 0

Pathogenic 0 10

*PMS2 concordance is 100%

eTable3. CVM predictions for Lynch syndrome are highly concordant with MAVE functional evidence. Benign 
CVM predictions (NPV≥95%) and benign MAVE predictions (NPV of ≥80%) as well as pathogenic CVM predictions (PPV≥99%) and pathogenic 
MAVE predictions (PPV≥80%) were included in the concordance analysis. Given the existence of a saturation MAVE dataset generated by an 
external group3, MSH2 CVM predictions were compared to the saturation dataset. Concordance rate when CVM MSH2 predictions are compared 
to an Invitae generated MAVE dataset for MSH2, showed similar concordance (data not shown). MLH1 and PMS2 CVM predictions were 
compared to Invitae-generated MAVE datasets. 

eTable2. CVM model predictions are highly concordant with EVE in silico predictions. 

EVE predictions

Benign Pathogenic

CVM predictions
Benign 1530 137

Pathogenic 79 517
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Technical methods/validation:
Dataset definition: First, the Monarch Disease Ontology (MonDO) is used to discover the set of all disease associations 
for genes tested by Invitae. Each condition is assigned a set of genes and their associated modes of inheritance using 
the Gene Curation Coalition (GenCC) database. 

Cohort identification (patient model): For each condition, positive and negative (control) cohorts of Invitae patients 
are identified as follows. First, affected individuals are identified as patients who had positive molecular diagnoses in 
at least one of the included genes. For example, an autosomal recessive association would require either compound 
heterozygosity or homozygosity for existing pathogenic or likely pathogenic variants. Control cohorts were identified 
the same way for all conditions–defined as patients who had only benign variants in the included genes. 

Data preprocessing and feature selection: Features used for Patient Score modeling include both structured (e.g., 
ICD-10 codes, age at accessioning, clinical area, etc) and textual (e.g., indication for testing, family history, clinician-
reported ancestry) patient information. ICD-10 codes are preprocessed by first abbreviating to the category level and 
then selecting the codes most enriched in the positive cohort per the chi-square test. For each patient requisition, a 
string combining both indication for testing and family history is created by concatenating these substrings with special 
tokens to demarcate the beginning and end of each span of text. 

eFigure 6. CVM pathogenicity predictions based solely on clinical evidence align with molecular knowledge of TSC2. No variants are 
predicted pathogenic by CVM for exons 26 and 32. 

Another mechanism to assess orthogonal validation for CVM could be performed for TSC2, a gene associated with 
Tuberous Sclerosis. Specifically, exons 26 and 32 of TSC2 are absent from all known clinically relevant transcripts of 
the gene4, (note legacy exon nomenclature). Using only clinical evidence, Invitae’s CVM for TSC2 identified genetic 
variants predicted to be pathogenic in each of the gene’s 42 exons, with the exception of exons 26 and 32—a 
remarkable concordance between the clinical model and independent molecular data (eFigure 6).
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Patient Score model: The Patient Score model follows the following sequence: a pre-trained large language model 
(UFNLP Gatortron) is fine-tuned to the entire corpus of Invitae’s labeled patients across conditions (TL1). For each 
condition, TL1 is further fine-tuned to that condition’s examples (TL2). This model is used to predict a text score for every 
patient, which is then used as a feature along with other patient information (e.g., age at testing, ICD-10 codes) to train 
a final model (PS). This model is then used to predict an overall score for each patient, the Patient Score. 

Cohort identification (variant model): The variant model utilizes the same variant labels that were used in the genotype 
filtering for cohorts of genotype-positive and genotype-negative patients. In addition, the set of patients who are 
informative for interpretation–the bellwether patients–is determined in the following manner. For each gene included 
in a condition, the annotated mode of inheritance (see dataset definition above), is used to identify patients who could 
be expected to manifest disease if the variant were causal, who should not have a relevant disease if the variant were 
benign, and who would not have the disease that would be explained by another known variant in an included gene. 
For example, the bellwether patients for a variant in a single-gene autosomal dominant model would be those who 
have the variant of interest and no other non-benign variants in the gene. In a two-gene model, they should also have 
no non-benign variants in the other gene.  

Variant Score model: The Variant Score model is a partially pooled, hierarchical Bayesian inference model for 
interpreting genetic variants across multiple genes. It estimates parameters like pathogenic rate, penetrance, and 
gene probabilities based on input tensors representing gene, Patient Scores, and variant labels. The Variant Score, a 
probability that the variant is pathogenic, is sampled from the posterior predictive distribution of the partially observed 
Bernoulli variable. 

Validation: An estimate of generalization performance was attained by evaluating the model against a holdout set of 
20% of labeled variants, which were not used for training. Metrics assessed included area under the receiver operating 
characteristic (AUROC) curve, average precision (AP), mean squared error (MSE), and classification metrics including 
F1 score, accuracy, and PPV and NPV. For high-performance models (AUROC≥0.8) and high-performance genes 
(AUROC≥0.8), variants with a posterior probability of pathogenicity ≤0.05 or ≥0.99 AND with ≥2 affected-appearing 
observations in unrelated individuals, were nominated for evidence via Sherloc point assignment.
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