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Cellular evidence and modeling platforms
Invitae’s functional modeling platform controls the quality of data from both published 
and Invitae-generated high-throughput cellular assays to improve variant interpretation.

Background

When available, data from experimental studies that characterize the impact of genetic 
variants on protein function are considered strong evidence in support of benign or pathogenic 
classifications by the American College of Medical Genetics and Genomics/Association for 
Molecular Pathology (ACMG/AMP) guidelines1 and Sherloc.1,2 

For example, the ACMG/AMP guidelines for sequence variant interpretation include two functional evidence criteria: 
well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product 
(i.e., criterion PS3) and well-established in vitro or in vivo functional studies show no damaging effect on protein 
function or splicing (i.e., criterion BS3). At Invitae, we have expanded this class of evidence in the Sherloc variant 
interpretation system to include more than 25 refined criteria to help improve consistency and reduce subjectivity. 
However, this type of evidence has been relatively scarce in the scientific literature, as effects on protein function 
have been experimentally characterized for only a small fraction of genetic variants. Over the past decade, high-
throughput sequencing-based cellular assays, collectively termed multiplex assays of variant effect (MAVEs), have 
been developed to systematically characterize a wide array of molecular functions, including protein-protein 
interactions,3 enzymatic activity,4 regulatory potential,5 and protein stability.6 Unlike previous approaches, MAVEs 
enable the characterization of many DNA variants within a single, pooled experiment (see online appendix, 
available at invit.ae/cep-appendix).

MAVEs present a useful opportunity to incorporate new, highly informative data into variant interpretation during 
clinical germline genetic testing. However, many MAVE experiments have been performed for basic research 
purposes rather than for clinical utility. As such, among the hundreds of MAVE experiments performed over the 
past decade, only a few dozen focused on genes associated with hereditary monogenic diseases and even fewer 
characterized the well-established molecular functions associated with those diseases (e.g., signaling, protein 
stability, cell death). Furthermore, because the technologies behind MAVEs were only emerging when professional 
practice guidelines for variant interpretation were last published by ACMG/AMP,1 there are no standardized quality 
control practices for assessing the clinical value of MAVE data. As a result, the application of MAVE data in variant 
interpretation by genetic testing laboratories has been inconsistent or has required the generation of gene-specific or 
publication-specific expert recommendations that are both complex and rigid.7

Framework for evaluating high-throughput experimental data and 
integrating the data into clinical interpretation
We previously described Invitae’s functional modeling platform (FMP),8 which employs a machine learning approach 
to control the quality of different types of data that are then weighted and used to predict the impact of genetic 
variants on molecular function. As such, the FMP provides a framework for uniformly analyzing MAVE data and 
integrating pathogenicity scores from the FMP into the Sherloc variant interpretation system (Figure 1).2 
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Figure 1. Functional modeling platform.
High-throughput assay data and known pathogenic and benign variant labels are used to train a model. 
The performance of the model is evaluated to determine whether model predictions correlate with known 
pathogenic and benign variants. This evidence is then incorporated into the larger variant interpretation 
system within Sherloc, which also includes evidence such as patient phenotype and family segregation.

Figure 2. Evaluation of MAVE  
datasets using Invitae’s FMP.

Histograms for CBS,9 MSH2,10 
and BRCA111 show predicted 
pathogenicity based on the 
assay data (x-axis) for known 
pathogenic and benign variants. 

Using Invitae’s FMP, we modeled 49 MAVE datasets from 22 publications (see online appendix). The performance of 
each model was assessed by calculating the area under the receiver operating characteristic (AUROC) curve using a 
minimum of five known pathogenic and five known benign variants per gene. The range of possible results, based on 
three sample datasets, is shown in Figure 2. 

Of the 49 datasets, 42 showed relatively poor performance in their ability to discriminate between benign and 
pathogenic variants (AUROC < 0.8). Many factors likely contributed to this observed utility rate. For example, many 
MAVEs only characterized one aspect of a gene’s function, whereas pathogenicity is often associated with multiple 
molecular functions. Additionally, many of these datasets included low numbers of clinically understood variants 
with which to gauge performance. Whatever the source, these results caution against naively using this evidence in 
clinical settings and highlight the importance of rigorous quality control. 

The remaining seven datasets, focused on five genes (BRCA1,11 BRCA2,12 MSH2,10 SCN5A,13 and TP5314–16), met the 
performance threshold that we set for clinical variant interpretation (AUROC ≥ 0.8) and have been incorporated into 
Sherloc. In addition to providing a quality control process for evaluating each MAVE dataset, the FMP calculates the 
degree of confidence for benign predictions (negative predictive value, NPV) and pathogenic predictions (positive 
predictive value, PPV) on a variant-by-variant basis. This allows a different weight to be assigned to each variant’s 
score within Sherloc (see online appendix). Among the seven datasets that passed quality control, more than 3,000 
unique variants achieved sufficiently confident predictions (>80% NPV or >80% PPV) to impact Sherloc variant 
interpretation scoring (Figure 3). Importantly, this quality control framework can now be used to more rapidly 
evaluate novel datasets or to re-evaluate previous datasets as additional data become available.
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Cellular evidence platform: developing internal cellular data 
optimized for clinical impact
Invitae’s expansive variant interpretation database and clinical testing experience present a unique opportunity to 
design MAVE studies that prioritize clinical impact for patients. By leveraging our clinical expertise and data, we 
can target previously overlooked disease genes, prioritize variant(s) of uncertain significance (VUS) that occur most 
frequently in patients, and refine the clinically understood variant sets used to train the machine-learning models. 
Moreover, given that functional evidence alone is not sufficient to produce definitive classifications, we can focus 
on variants for which orthogonal evidence (e.g., clinical observations) already exists in our database, as additional 
functional evidence may tip the interpretation scales in these cases. 

To this end, Invitae has developed an experimental approach, called the Cellular Evidence Platform (CEP), that 
can generate functional data for genes and variants of clinical interest (Figure 4; see online appendix for detailed 
methodology). The CEP is a scalable system that enables functional characterization of variants in genes associated 
with either gain-of-function or loss-of-function mechanisms of disease. Importantly, evidence derived from these internal 
assays are integrated into variant interpretation using the FMP to ensure rigor in quality and scoring that is equivalent  
to that of externally published MAVE datasets. 

Figure 3. Predictive output of seven performant 
MAVE datasets from the published literature. 

Functional evidence from seven datasets10-16 for five 
genes that have been incorporated into clinical variant 
interpretation at Invitae. Bars depict the fractions of 
variants with pathogenic and benign predictions at 
various performance thresholds. 

Figure 4. Overview of Invitae’s Cellular Evidence Platform.
First, a pool of variants are synthesized for a target gene. Next, the pool of variants 
is introduced into a cell population such that each cell has only one variant copy 
of the gene and all variants are present in the cell population. Single-cell RNA 
expression profiles are generated for the cells, such that an average of 100 
independent cell profiles are generated per variant in the variant pool. Cells are 
mapped to variants using variant barcodes, and expression data for high-quality 
cells are normalized, filtered, and prepared for modeling. Gene expression-based 
features are selected and data are divided into training and validation sets. 
Supervised learning algorithms are trained using expression features of known 
pathogenic and benign variants. Finally, the most performant model for each gene  
is selected, controlled for quality, and incorporated into Sherloc. 
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As of February 2023, 44 Invitae-generated MAVE datasets have been evaluated. For these experiments, we targeted 
single-nucleotide variants that Invitae has observed rather than generating all possible single-nucleotide variants 
(a common practice in published MAVEs). Because functional evidence must be combined with clinical evidence to 
reach definitive classifications within Sherloc, this strategy allows us to test more genes without reducing the clinical 
impact of the functional evidence. Of these 44 datasets, 19 met the aforementioned predictive performance threshold 
(AUROC > 0.8; Figure 5), resulting in a success rate of 43% (19/44). These successful datasets span multiple biologic 
pathways and include examples of both loss-of-function and gain-of-function disease mechanisms. For the 19 genes with 
sufficiently predictive CEP-generated MAVE datasets, we observed an average reclassification rate of 4.6% among 
targeted VUS. For each reclassified VUS, an additional 18 VUS received Sherloc points, moving them one step closer  
to a future reclassification.

Figure 5. Genes with high-quality CEP-generated MAVE data. 

As of February 2023, evidence based on the CEP is available for 19 
genes from several large pathways. Circles that are touching represent 
genes that interact with each other. The size of the circle correlates 
with the size of the cellular experiment (not necessarily the number of 
integrated variants). Of these, MAX was the smallest experiment with 
74 variants, and PTEN was the largest with 275 variants. 

Summary
As more healthcare providers turn to genetic testing for diagnostic confirmation and treatment decisions, the continued 
development of scalable and innovative approaches for resolving VUS is critical. Although MAVEs represent such 
an approach and have been commonly used for academic research purposes, they have rarely been implemented in 
the diagnostic testing setting. This missed opportunity is largely a consequence of limited guidance from professional 
societies and expert user groups either on which genes, assays, and datasets qualify as well-established functional 
evidence, or on how best to validate these studies for clinical variant interpretation. 

To address these challenges, Invitae utilizes our FMP to control the quality of MAVE datasets and incorporate them  
into clinical variant interpretation only if they pass a stringent threshold. This process effectively balances scalability 
and performance, allowing our interpretation system access to more high-quality evidence. As of February 2023, we 
have incorporated functional evidence for thousands of variants from 24 unique genes, with both externally (n = 5 
genes) and internally (n = 19 genes) generated MAVE datasets. Together, this work highlights the significant potential  
of MAVE data for reducing VUS rates over time and demonstrates the benefit of generating MAVE datasets at Invitae  
to accelerate the clinical utility of high-throughput functional assays for variant interpretation. 

Looking forward, we believe our CEP will become a key differentiator for Invitae. The advantages extend beyond 
improved interpretation of germline sequence variants. The rich data generated with the cellular models allow for 
a deeper understanding of disease mechanisms, including whether genes and variants have a gain-of-function or 



Contact us Call 1.800.436.3037  or  visit invitae.com/contact

 5 1400 16th Street, San Francisco, CA 94103  |  1.800.436.3037  |  invitae.com/contact  |  invitae.com 
©2022 Invitae Corporation. All Rights Reserved. March 2023 WP134-1

loss-of-function mechanism of disease. In addition, functional analysis of multiple genes in the same biochemical 
pathway may help uncover candidate genes for existing diseases. Finally, we anticipate that the utility of these cellular 
models will extend to somatic variant interpretation, patient stratification of treatment options, and drug development.

View online appendix at invit.ae/cep-appendix.
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